Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Journal
Document Type
Year range
1.
Biosensors (Basel) ; 13(2)2023 Jan 23.
Article in English | MEDLINE | ID: covidwho-20238646

ABSTRACT

Rapid and sensitive detection of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for early diagnosis and effective treatment. Nucleic acid testing has been considered the gold standard method for the diagnosis of COVID-19 for its high sensitivity and specificity. However, the polymerase chain reaction (PCR)-based method in the central lab requires expensive equipment and well-trained personnel, which makes it difficult to be used in resource-limited settings. It highlights the need for a sensitive and simple assay that allows potential patients to detect SARS-CoV-2 by themselves. Here, we developed an electricity-free self-testing system based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) that allows for rapid and accurate detection of SARS-CoV-2. Our system employs a heating bag as the heat source, and a 3D-printed box filled with phase change material (PCM) that successfully regulates the temperature for the RT-LAMP. The colorimetric method could be completed in 40 min and the results could be read out by the naked eye. A ratiometric measurement for exact readout was also incorporated to improve the detection accuracy of the system. This self-testing system is a promising tool for point-of-care testing (POCT) that enables rapid and sensitive diagnosis of SARS-CoV-2 in the real world and will improve the current COVID-19 screening efforts for control and mitigation of the pandemic.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Self-Testing , COVID-19 Testing , Clinical Laboratory Techniques/methods , Sensitivity and Specificity , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods
2.
PeerJ ; 10: e14121, 2022.
Article in English | MEDLINE | ID: covidwho-2067171

ABSTRACT

Coronavirus Disease 2019 (COVID-19) caused by SARS-CoV-2 poses a significant threat to global public health. Early detection with reliable, fast, and simple assays is crucial to contain the spread of SARS-CoV-2. The real-time reverse transcription-polymerase chain reaction (RT-PCR) assay is currently the gold standard for SARS-CoV-2 detection; however, the reverse transcription loop-mediated isothermal amplification method (RT-LAMP) assay may allow for faster, simpler and cheaper screening of SARS-CoV-2. In this study, the triple-target RT-LAMP assay was first established to simultaneously detect three different target regions (ORF1ab, N and E genes) of SARS-CoV-2. The results revealed that the developed triplex RT-LAMP assay was able to detect down to 11 copies of SARS-CoV-2 RNA per 25 µL reaction, with greater sensitivity than singleplex or duplex RT-LAMP assays. Moreover, two different indicators, hydroxy naphthol blue (HNB) and cresol red, were studied in the colorimetric RT-LAMP assay; our results suggest that both indicators are suitable for RT-LAMP reactions with an obvious color change. In conclusion, our developed triplex colorimetric RT-LAMP assay may be useful for the screening of COVID-19 cases in limited-resource areas.

SELECTION OF CITATIONS
SEARCH DETAIL